Whole-cell biotransformation systems for reduction of prochiral carbonyl compounds to chiral alcohol in Escherichia coli
نویسندگان
چکیده
Lactobacillus brevis alcohol dehydrogenase (Lb-ADH) catalyzes reduction of prochiral carbonyl compounds to chiral alcohol and meanwhile consumes its cofactor NADH into NAD(+), while the cofactor regeneration can be catalyzed by Candida boidinii formate dehydrogenase (Cb-FDH). This work presents three different Escherichia coli whole-cell biocatalyst systems expressing recombinant ADH/FDH, FDH-LIN1-ADH and FDH-LIN2-ADH, respectively, all of which display very high efficacies of prochiral carbonyl conversion with respect to conversion rates and enantiomeric excess values. ADH/FDH represents co-expression of Lb-ADH and Cb-FDH under different promoters in a single vector. Fusion of Lb-ADH and Cb-FDH by a linker peptide LIN1 (GGGGS)₂ or LIN2 (EAAAK)₂ generates the two bifunctional enzymes FDH-LIN1-ADH and FDH-LIN2-ADH, which enable efficient asymmetric reduction of prochiral ketones in whole-cell biotransformation.
منابع مشابه
Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158
BACKGROUND Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog's rule, and thus the (S)-alcohols are usually obtained...
متن کاملEnzymatic characterization of a recombinant carbonyl reductase from Acetobacter sp. CCTCC M209061
BACKGROUND Acetobacter sp. CCTCC M209061 could catalyze carbonyl compounds to chiral alcohols following anti-Prelog rule with excellent enantioselectivity. Therefore, the enzymatic characterization of carbonyl reductase (CR) from Acetobacter sp. CCTCC M209061 needs to be investigated. RESULTS A CR from Acetobacter sp. CCTCC M209061 (AcCR) was cloned and expressed in E. coli. AcCR was purified...
متن کاملCarbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol
BACKGROUND (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol [(R)-3,5-BTPE] is a valuable chiral intermediate for Aprepitant (Emend) and Fosaprepitant (Ivemend). Biocatalyzed asymmetric reduction is a preferred approach to synthesize highly optically active (R)-3,5-BTPE. However, the product concentration and productivity of reported (R)-3,5-BTPE synthetic processes remain unsatisfied. RESULTS A N...
متن کاملThe Effect of Culture System on Benzaldehyde Biotransformation by Cultured Cells of Silybum marianum (L.) Gaertn.
The abilities of Silybum marianum cell culture to biotransform benzaldehyde to benzyl alcohol in three culture systems were compared. Callus cultures of Silybum marianum were established from seedlings, and healthy suspensions and immobilized cultures grown on the Murashige and Skoog medium. S. marianum cells were immobilized in both agar beads and fiber cotton ...
متن کاملEnantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli.
BACKGROUND l-Phenyllactic acid (l-PLA)-a valuable building block in the pharmaceutical and chemical industry-has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis...
متن کامل